Многоатомные спирты

В этой реакции образуется галогеноалкан (бромэтан и вода). Такая химическая реакция спиртов обусловлена не только атомом водорода в гидроксильной группе, но и всей гидроксильной группой! 3. Межмолекулярная дегидратация спиртов — отщепление молекулы воды от двух молекул спирта при нагревании в присутствии водоотнимающих средств.

Одноатомные спирты — спирты, у которых имеется одна гидроксильная группа. Свойства спиртов, которые являются изомерными, во многом похожи, но в некоторых реакциях они ведут себя по-разному. Наиболее ярким представителем химических соединений этого класса является этиловый спирт. Его химическая формула C2H5-OH. При этом нужно отметить, что этиловый спирт полезен в качестве растворителя, консерванта, средства понижающего температуру замерзания какого-либо препарата.

Многоатомные спирты с небольшим числом атомов углерода — это вязкие жидкости, высшие спирты — твёрдые вещества. Алкоголяты крайне неустойчивы и при действии воды — разлагаются на спирт и щелочь. Отсюда следует вывод, что одноатомные спирты не реагируют со щелочами! Отщепление атома водорода от спирта может происходить в его же молекуле (то есть происходит перераспределение атомов в молекуле). Сложные эфиры легко подвергаются гидролизу, распадаясь на спирт и карбоновую кислоту.

Кислородом воздуха при обычной температуре спирты не окисляются, но при нагревании в присутствии катализаторов идёт окисление. Примером может служить оксид меди (CuO), марганцовка (KMnO4), хромовая смесь. При действии окислителей получаются различные продукты и зависят от строения исходного спирта.

Многоатомные спирты

Что касается многоатомных спиртов, то они имеют сладковатый вкус, но некоторые из них ядовиты. Этиленгликоль — типичный представитель многоатомных спиртов. Его химическая формула CH2OH — CH2OH. — двухатомный спирт. Это сладкая жидкость, которая способно отлично растворяться в воде в любых пропорциях. Эмульгаторы — это высшие спирты, эфиры и другие сложные химические вещества, которые при смешивании с другими веществами, например жирами, образуют стойкие эмульсии.

Реакции третичных спиртов с HCl протекают достаточно легко. При этом образуются соответствующие третичные алкилхлориды (совместно с продуктами побочных реакций). Первичные и вторичные спирты реагируют гораздо медленнее и требуют применения катализатора. Прямое взаимодействие спиртов с фтороводородом возможно только при использовании третичных, аллиловых и бензиловых спиртов. В ходе такого замещения образуется промежуточный карбокатион, поэтому SN1 реакции могут сопровождаться перегруппировками и элиминированием.

Распространённым способом превращения спиртов в алкилгалогениды является их взаимодействие с галогенидами фосфора: РВr3, РСl5, РОСl3 или РI3 (образуется непосредственно в ходе реакции). При этом следует учитывать, что замещение часто осложняется изомеризацией и перегруппировками, поэтому подобная реакция, обычно, применяется для относительно спиртов простого строения:[стр.

Спирты способны реагировать с хлорангидридами сульфокислот в присутствии основания с образованием соответствующих сложных эфиров. Первичные спирты реагируют быстрее вторичных и значительно быстрее третичных. Вместе с тем, реакция применяется в промышленности для синтеза некоторых простых эфиров.

Реакция между спиртом и кислотой происходит в присутствии дициклогексилкарбодиимида (ДЦК) и небольших количеств 4-N,N-диметиламинопирнидина. Реакция спиртов с галогенангидридами — лучший общий способ получения сложных эфиров, так как позволяет использовать субстраты с самыми разными функциональными группами:[стр.

Вместо ацилгалогенидов, для синтеза сложных эфиров может быть использована схожая реакция ангидридов карбоновых кислот со спиртами. Алифатические спирты легко вступают в реакцию с фосгеном при комнатной температуре, образуя хлорформиаты (ROC(O)Cl) с высоким выходом:[стр. Например, взаимодействием амилового спирта с аммиаком в присутствии водорода и катализаторов (Ni+Cr2O3) при повышенной температуре и давлении получают смешанные амиламины.

В ненуклеофильной среде спирты, подвергаясь протонированию со стороны кислоты, элиминируются по механизму Е1. Механизм E2 для реакции дегидратации встречается редко:[стр. Первичные спирты в зависимости от выбора реагента окисляются до альдегидов или карбоновых кислот, вторичные — до соответствующих кетонов и кислот.

Спирты в косметике и парфюмерии

Реакции окисления спиртов, иначе — превращения в карбонильные соединения, можно разделить на две условные группы:[стр. В таблице 1. приведены сводные данные по реакциям окисления спиртов до различных производных:[стр. Третичные спирты под действием триоксида хрома окисляются с разрушением углеводородного скелета, например, циклоалканолы трансформируются с раскрытием кольца в кетоны и карбоновые кислоты.

Существует большое количество неорганических соединений, которые могут быть использованы для окисления спиртов в те или иные производные. В 1963 году К. Пфицнером и Дж. Моффаттом была совершена публикация, в которой сообщалось об открытии нового метода окисления спиртов. В 1965 году (спустя два года после сообщения Пфицнера и Моффатта) Олбрайтом и Голдманом был предложен способ окисления спиртов при комнатной температуре смесью ДМСО и уксусного ангидрида.

В этой реакции при действии концентрированной серной кислоты и при нагревании происходит дегидратация спиртов. 6) Окисление спиртов. Спирты могут быть превращены в алкилгалогениды реакцией с квазифосфониевыми солями — +X−. Существуют и полиатомные (многоатомные) спирты, содержащие более трех гидроксильных групп в молекуле.